Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(1): 351-377, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177913

RESUMEN

Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR, to mice. In the HFD context, LiPR rescued the survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. LiPR also rescued the reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. In addition, some of these neurogenic effects were exerted by another anti-obesity compound, Liraglutide. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.


Asunto(s)
Neuropéptidos , Obesidad , Ratones , Humanos , Animales , Hormona Liberadora de Prolactina/farmacología , Hormona Liberadora de Prolactina/uso terapéutico , Obesidad/tratamiento farmacológico , Peso Corporal , Neurogénesis , Hipotálamo
2.
Curr Protoc ; 3(6): e786, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37272700

RESUMEN

Neurons in the hypothalamus orchestrate homeostatic physiological processes and behaviors essential for life. Human pluripotent stem cells (hPSCs) can be differentiated into many types of hypothalamic neurons, progenitors, and glia. This updated unit includes published studies and protocols with new advances in the differentiation, maturation, and interrogation by transcriptomic profiling and calcium imaging of human hypothalamic cell populations. Specifically, new methods to freeze and thaw hypothalamic progenitors after they have been patterned and before substantial neurogenesis has occurred are provided that will facilitate experimental flexibility and planning. Also included are updated recipes and protocols for neuronal maturation, with details on the equipment and methods for examining their transcriptomic response and cell-autonomous properties in culture in the presence of synaptic blockers. Together, these protocols facilitate the adoption and use of this model system for fundamental biological discovery and therapeutic translation to human diseases such as obesity, diabetes, sleep disorders, infertility, and chronic stress. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: hPSC maintenance Basic Protocol 2: Hypothalamic neuron differentiation Support Protocol 1: Cortical neuron (control) differentiation Basic Protocol 3: Neuronal maturation Support Protocol 2: Cryopreservation and thawing of neuronal progenitors Support Protocol 3: Quality control: Confirmation of hypothalamic patterning and neurogenesis Support Protocol 4: Bulk RNA sequencing of hypothalamic cultures Basic Protocol 4: Calcium imaging of hypothalamic neurons using Fura-2 AM Alternate Protocol: Calcium imaging of green fluorescent hypothalamic neurons using Rhod-3 AM.


Asunto(s)
Neuronas , Transcriptoma , Humanos , Neuronas/fisiología , Diferenciación Celular/fisiología , Hipotálamo/diagnóstico por imagen , Neurogénesis/genética , Calcio de la Dieta
3.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092553

RESUMEN

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Pubertad Precoz , Humanos , Femenino , Ratones , Animales , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hipotálamo/metabolismo , Pubertad , Hormona Liberadora de Gonadotropina/metabolismo , Pubertad Precoz/genética , Pubertad Precoz/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Neuroendocrinology ; 110(1-2): 92-104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31104058

RESUMEN

In outbred mice, susceptibility or resistance to diet-induced obesity is associated with rapid changes in hypothalamic proopiomelanocortin (POMC) levels. Here, we evaluated 3 hypotheses that potentially explain the development of the different obesity phenotypes in outbred Swiss mice. First, rapid and differential changes in the gut microbiota in obesity-prone (OP) and obesity-resistant (OR) mice fed on a high-fat diet (HFD) might cause differential efficiencies in fatty acid harvesting leading to changes in systemic fatty acid concentrations that in turn affect POMC expression and processing. Second, independently of the gut microbiota, OP mice might have increased blood fatty acid levels after the introduction of a HFD, which could affect POMC expression and processing. Third, fatty acids might act directly in the hypothalamus to differentially regulate POMC expression and/or processing in OP and OR mice. We evaluated OP and OR male Swiss mice using 16S rRNA sequencing for the determination of gut microbiota; gas chromatography for blood lipid determination; and immunoblot and real-time polymerase chain reaction for protein and transcript determination and indirect calorimetry. Some experiments were performed with human pluripotent stem cells differentiated into hypothalamic neurons. We did not find evidence supporting the first 2 hypotheses. However, we found that in OP but not in OR mice, palmitate induces a rapid increase in hypothalamic POMC, which is followed by increased expression of proprotein convertase subtilisin/kexin type 1 PC1/3. Lentiviral inhibition of hypothalamic PC1/3 increased caloric intake and body mass in both OP and OR mice. In human stem cell-derived hypothalamic cells, we found that palmitate potently suppressed the production of POMC-derived peptides. Palmitate directly regulates PC1/3 in OP mice and likely has a functional impact on POMC processing.


Asunto(s)
Microbioma Gastrointestinal , Hipotálamo/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Palmitatos/farmacología , Proopiomelanocortina/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Humanos , Ácido Linoleico/farmacología , Masculino , Ratones , Obesidad/sangre , Obesidad/etiología , Células Madre Pluripotentes , ARN Ribosómico 16S
5.
Mol Metab ; 17: 82-97, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30201275

RESUMEN

OBJECTIVE: The lack of pro-opiomelanocortin (POMC)-derived melanocortin peptides results in hypoadrenalism and severe obesity in both humans and rodents that is treatable with synthetic melanocortins. However, there are significant differences in POMC processing between humans and rodents, and little is known about the relative physiological importance of POMC products in the human brain. The aim of this study was to determine which POMC-derived peptides are present in the human brain, to establish their relative concentrations, and to test if their production is dynamically regulated. METHODS: We analysed both fresh post-mortem human hypothalamic tissue and hypothalamic neurons derived from human pluripotent stem cells (hPSCs) using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the sequence and quantify the production of hypothalamic neuropeptides, including those derived from POMC. RESULTS: In both in vitro and in vivo hypothalamic cells, LC-MS/MS revealed the sequence of hundreds of neuropeptides as a resource for the field. Although the existence of ß-melanocyte stimulating hormone (MSH) is controversial, we found that both this peptide and desacetyl α-MSH (d-α-MSH) were produced in considerable excess of acetylated α-MSH. In hPSC-derived hypothalamic neurons, these POMC derivatives were appropriately trafficked, secreted, and their production was significantly (P < 0.0001) increased in response to the hormone leptin. CONCLUSIONS: Our findings challenge the assumed pre-eminence of α-MSH and suggest that in humans, d-α-MSH and ß-MSH are likely to be the predominant physiological products acting on melanocortin receptors.


Asunto(s)
Melanocortinas/metabolismo , alfa-MSH/metabolismo , beta-MSH/metabolismo , Cromatografía Liquida , Femenino , Homeostasis/fisiología , Humanos , Hipotálamo , Leptina/metabolismo , Masculino , Espectrometría de Masas/métodos , Neuronas/metabolismo , Neuropéptidos/metabolismo , Células Madre Pluripotentes/metabolismo , Proopiomelanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Espectrometría de Masas en Tándem
6.
Mol Metab ; 10: 14-27, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29439854

RESUMEN

OBJECTIVE: Dietary proteins are sensed by hypothalamic neurons and strongly influence multiple aspects of metabolic health, including appetite, weight gain, and adiposity. However, little is known about the mechanisms by which hypothalamic neural circuits controlling behavior and metabolism sense protein availability. The aim of this study is to characterize how neurons from the mediobasal hypothalamus respond to a signal of protein availability: the amino acid l-leucine. METHODS: We used primary cultures of post-weaning murine mediobasal hypothalamic neurons, hypothalamic neurons derived from human induced pluripotent stem cells, and calcium imaging to characterize rapid neuronal responses to physiological changes in extracellular l-Leucine concentration. RESULTS: A neurochemically diverse subset of both mouse and human hypothalamic neurons responded rapidly to l-leucine. Consistent with l-leucine's anorexigenic role, we found that 25% of mouse MBH POMC neurons were activated by l-leucine. 10% of MBH NPY neurons were inhibited by l-leucine, and leucine rapidly reduced AGRP secretion, providing a mechanism for the rapid leucine-induced inhibition of foraging behavior in rodents. Surprisingly, none of the candidate mechanisms previously implicated in hypothalamic leucine sensing (KATP channels, mTORC1 signaling, amino-acid decarboxylation) were involved in the acute activity changes produced by l-leucine. Instead, our data indicate that leucine-induced neuronal activation involves a plasma membrane Ca2+ channel, whereas leucine-induced neuronal inhibition is mediated by inhibition of a store-operated Ca2+ current. CONCLUSIONS: A subset of neurons in the mediobasal hypothalamus rapidly respond to physiological changes in extracellular leucine concentration. Leucine can produce both increases and decreases in neuronal Ca2+ concentrations in a neurochemically-diverse group of neurons, including some POMC and NPY/AGRP neurons. Our data reveal that leucine can signal through novel mechanisms to rapidly affect neuronal activity.


Asunto(s)
Hipotálamo/metabolismo , Leucina/farmacología , Neuronas/metabolismo , Transducción de Señal , Animales , Calcio/metabolismo , Células Cultivadas , Humanos , Hipotálamo/citología , Canales KATP/metabolismo , Leucina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos
7.
Curr Protoc Neurosci ; 81: 3.33.1-3.33.24, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29064566

RESUMEN

Neurons in the hypothalamus orchestrate homeostatic physiological processes and behaviors essential for life. Defects in the function of hypothalamic neurons cause a spectrum of human diseases, including obesity, infertility, growth defects, sleep disorders, social disorders, and stress disorders. These diseases have been studied in animal models such as mice, but the rarity and relative inaccessibility of mouse hypothalamic neurons and species-specific differences between mice and humans highlight the need for human cellular models of hypothalamic diseases. We and others have developed methods to differentiate human pluripotent stem cells (hPSCs) into hypothalamic neurons and related cell types, such as astrocytes. This protocol builds on published studies by providing detailed step-by-step instructions for neuronal differentiation, quality control, long-term neuronal maintenance, and the functional interrogation of hypothalamic cells by calcium imaging. Together, these protocols should enable any group with appropriate facilities to generate and study human hypothalamic cells. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Hipotálamo/citología , Neurogénesis/fisiología , Neuronas/fisiología , Proteína Relacionada con Agouti/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Humanos , Hormonas Hipotalámicas/metabolismo , Hipotálamo/embriología , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/fisiología , Proopiomelanocortina/metabolismo , Transducción de Señal/fisiología , Factores de Tiempo
8.
Development ; 142(6): 1113-24, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25725064

RESUMEN

Loss of neurons that express the neuropeptide hypocretin (Hcrt) has been implicated in narcolepsy, a debilitating disorder characterized by excessive daytime sleepiness and cataplexy. Cell replacement therapy, using Hcrt-expressing neurons generated in vitro, is a potentially useful therapeutic approach, but factors sufficient to specify Hcrt neurons are unknown. Using zebrafish as a high-throughput system to screen for factors that can specify Hcrt neurons in vivo, we identified the LIM homeobox transcription factor Lhx9 as necessary and sufficient to specify Hcrt neurons. We found that Lhx9 can directly induce hcrt expression and we identified two potential Lhx9 binding sites in the zebrafish hcrt promoter. Akin to its function in zebrafish, we found that Lhx9 is sufficient to specify Hcrt-expressing neurons in the developing mouse hypothalamus. Our results elucidate an evolutionarily conserved role for Lhx9 in Hcrt neuron specification that improves our understanding of Hcrt neuron development.


Asunto(s)
Separación Celular/métodos , Regulación de la Expresión Génica/fisiología , Hipotálamo/embriología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Clonación Molecular , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Hipotálamo/metabolismo , Inmunohistoquímica , Ratones , Análisis por Micromatrices , Orexinas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/genética
9.
Development ; 142(4): 633-43, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25670790

RESUMEN

Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases.


Asunto(s)
Hipotálamo/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Proteína Relacionada con Agouti/metabolismo , Arginina Vasopresina/metabolismo , Humanos , Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Neuropéptidos/metabolismo , Orexinas , Oxitocina/metabolismo , Hormonas Hipofisarias/metabolismo , Proopiomelanocortina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA